Higher Order Asymptotics of the Modified Non-Linear Schrödinger Equation

نویسنده

  • A. H. Vartanian
چکیده

Using the matrix Riemann-Hilbert factorisation approach for non-linear evolution systems which take the form of Lax-pair isospectral deformations, the higher order asymptotics as t→±∞ (x/t∼O(1)) of the solution to the Cauchy problem for the modified non-linear Schrödinger equation, i∂tu+ 1 2 ∂ x u+ |u|u+is∂x(|u|u) = 0, s ∈ R>0, which is a model for non-linear pulse propagation in optical fibres in the subpicosecond time scale, are obtained: also derived are analogous results for two gauge-equivalent nonlinear evolution equations; in particular, the derivative non-linear Schrödinger equation, i∂tq+∂ 2 xq−i∂x(|q|q)=0. AMS subject classifications. 35Q15, 35Q55, 58F07, 78A60 PACS. 02.30.Jr, 42.81.Dp, 42.65.Tg, 02.30.Mv Abbreviated title. Higher Order Asymptotics of the MNLSE

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leading Order Temporal Asymptotics of the Modified Non-Linear Schrödinger Equation: Solitonless Sector∗

Using the matrix Riemann-Hilbert (RH) factorisation approach for non-linear evolution equations (NLEEs) integrable in the sense of the inverse scattering method (ISM), we obtain, in the solitonless sector, the leading order asymptotics as t → ±∞ of the solution to the Cauchy initial-value problem for the modified non-linear Schrödinger equation (MNLSE), i∂tu + 1 2 ∂ xu + |u|2u + is∂x(|u|u) = 0,...

متن کامل

Long-Time Asymptotics of Solutions to the Cauchy Problem for the Defocusing Non-Linear Schrödinger Equation with Finite Density Initial Data. I. Solitonless Sector

The methodology of the Riemann-Hilbert (RH) factorisation approach for Lax-pair isospectral deformations is used to derive, in the solitonless sector, the leading-order asymptotics as t→±∞ (x/t∼O(1)) of solutions to the Cauchy problem for the defocusing non-linear Schrödinger equation (DfNLSE), i∂tu+∂ 2 xu−2(|u|−1)u=0, with finite density initial data u(x, 0)=x→±∞ exp( i(1∓1)θ 2 )(1+o(1)), wher...

متن کامل

Comparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation

Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...

متن کامل

Long-Time Asymptotics of Solutions to the Cauchy Problem for the Defocusing Non-Linear Schrödinger Equation with Finite-Density Initial Data. II. Dark Solitons on Continua

For Lax-pair isospectral deformations whose associated spectrum, for given initial data, consists of the disjoint union of a finitely denumerable discrete spectrum (solitons) and a continuous spectrum (continuum), the matrix Riemann-Hilbert problem approach is used to derive the leading-order asymptotics as |t| → ∞ (x/t ∼ O(1)) of solutions (u = u(x, t)) to the Cauchy problem for the defocusing...

متن کامل

Asymptotics of Solutions to the Modified Nonlinear Schrödinger Equation: Solitons on a Non-Vanishing Continuous Background

Using the matrix Riemann-Hilbert factorization approach for nonlinear evolution systems which take the form of Lax-pair isospectral deformations and whose corresponding Lax operators contain both discrete and continuous spectra, the leading-order asymptotics as t → ±∞ of the solution to the Cauchy problem for the modified nonlinear Schrödinger equation, i∂tu+ 1 2 ∂ xu+ |u|2u+ is∂x(|u|u) = 0, s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008